IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

A study of the polaronic band width and the small-to-large-polaron transition in a many-

polaron system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 8265
(http://iopscience.iop.org/0953-8984/5/44/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 11/05/2010 at 02:11

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

: I.rPhys.: Condens. Matter 5 (1993} 8265-8276. Printed in the UK

‘A study of the polaronic band width and the
small-to-large-polaron transition in a many-polaron system -

A N Das and S Sil |
Saha- Insutuls of Nueclear Physms ‘Sector 1, Block AF, Bldhannagar, CaIculm 700 064, ‘India

Received 7 April -1993, in final form 4 Augaist 1993

Abstract: A short-range electron-phonon (e-ph) interaction is considered in a many-electron
narrow-band system where electron hopping is comparable with the phonon frequency, The
behaviour of the polarons as' a function of the e-ph interaction strength and the electron
concentration is studied within the framework of the mean-field theory using a rhodified Lang—
Firsov trapsformation and two-phonon coherent states of thé phonon subsystem. The small-to-
large-polaron transition and the effect of the two-phonon coherent state are discussed.

1. Introduction

In the presence of an electron—phonon (e—ph) interaction an electron couples with phonons
to form a poldton, composed of the original electron dressed with the phonon-cloud that
“moves along with the electron [1,2]. The nature of polarons, for short-range e—ph coupling,
depends mamly on three quantities: the intersite transfer energy of the electron, the e—
ph coupling energy and the frequency of the phonons. In the adiabatic case (the phonon
frequency wp is small compared with the electronic band width) a small polaron with a
 thick phonon cloud is formed for large e—ph coupling. The band width of the small polaron
is reduced exponentially by the Lang-Firsov [2] factor, and thus the polarons appear to
be very heavy. For weak e—ph coupling the electron is almost bare with only a very thin
_ phonon cloud extending over a wide region [3, 4]. Within the adiabatic limit, Toyozawa [3].
Shinozuka and Toyozawa [4] and Emin [5] obtained a discontinuous jump in the polaronic
effective mass at a critical e—ph coupling strength [3-5]. However, Lowen [6] showed
that there is no abrupt (discontinuous) phase transitioni- in the ground stite of an e—ph
* system, described by a generalized Holstein Hamiltonian, for a finite phonon frequency as
the e—ph coupling increases. In the non-adiabatic limit (very large «y) the phonons can
follow the electron instantaneously and the corresponding polaren is a small polaron with
no mass enhancement [7]. Both in the adiabatic and in the non-adiabatic limit a number of
investigations [3-5,7, 8] have been carried out; however, in the intermediate regime (finite
. phonon frequerncy), where quantum lattice fiuctuations may play an important role, a few
studies have been made, particularly for a many-polaron system [7-9]. _

- The study of many-polaron systems has attracted renewed interest in the context of the
high-T; oxide superconductors [10-15]. For a many-polaron system, Hang [16] pointed out
that a two-phonon coherent state for the phonon subsystem corresponds to the ground state
of the system and has an important effect in reducing the effective mass of polarons. We
studied the significance of the two-phonon coherent state in the strong-correlation limit and
its implication in understanding the properties of the high-T; systems [14]. In [14, 16] the
Lang-Firsov transformation, which diagonalizes the e—ph interaction terms completely, has
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been used. However, in that method the lattice deformations, which may be produced at
different sites around the charge carrier, cannot be treated as variational parameters and this
restricts study of the nature of the polarons.

The present work aims to study the nature of polarons in a many-polaron system as a
function of the e~ph coupling strength and the electron density for the intermediate regime
(finite phonon frequency). We consider a short-range e-ph interaction, but the lattice
deformations at different sites around the electron are treated as variational parameters.
The role of the two-phonon coherent state is also studied. We observe that the lattice
deformation may spread over a wider region in a suitable parameter space even for a
short-range interaction. In a narrow region of e—ph coupling an interesting variation in
the polaronic effective mass with the electron concentration is observed. The polaronic
effective mass is very high for both a nearly empty and an almost filled band, whereas it is
much lower in the intermediate electron concentrations. In section 2 the variational ground-
state energy of a2 many-polaron system is determined using suitable phonon states and the
mean-field approximation. The results of the numerical calculations and its implication are
discussed in section 3.

2. Formulation

To describe a2 many-polaron system we consider a tight-binding Hamiltonian in the presence
of a (local) e-ph interaction which is expected to capture the main features of the physics
of lattice fermions coupling with a boson mode. The corresponding Hamiltonian includes
the nearest-neighbour hopping f;, e-ph interaction g, and an on-site repulsion U between
electrons of different spins. The model Hamiltonian for such an interacting system is written

H=- Z l‘ijc?;cja +U anfnu, +& Znia(bi + 5" + o be'bi N
i i

L. i

where ¢} and ¢;, are the creation and annihilation operators, respectively, for an electron
at site { with spin o, b;" and b; are the creation and annihilation operators, respectively, for
the phonons which are assumed to be dispersionless, and wq represents the frequency of the
phonon system.

In the presence of large e—ph coupling, the lattice would be deformed around an electron,
forming a polaron. To study the spread and the depth of the lattice deformations around the
electron we apply the modified Lang-Firsov transformation [3-5] to the Hamiltonian H':

H= exp(R) Hexp(—R) = - Z tijexp(Y; — Y;) c;*c',cja - spZn;a -W Zn;nj
b

[ K- B i

+ V3 Z Ripshizs + Uit Z”M‘"u + wp Zb,ﬂh‘ + Vool—ph (2)
184850 7 i

where

R=Y (11?1:(1’,-+ —b)+ha Y mlbhs — b:+a)) A =M/ Ay = dafey
&

i
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é is a nearest-neighbour -vector,

Y =%GF - b+ Z(th,s bis) @
gp = (281 — AN — Zh2hs (z is the coo;dixiaﬁon number)  (5)
Vi =2(g1 — MMia )
U =U — 2Ag: ~ 2k~ zhakal | o
Vamdadp . | o ®
Voot-ph = Z(gl A) (b + b*)nl Z)Az(m + b,+;)n, ©)

[X:]

Here ¢p is the polaron self-ehergy, 1% is the attractive interaction between nearest-neighbour
- polarons, induced by the e—ph coupling, V4 is the interaction between next-nearest-neighbour
polarons, U is the effective on-site interaction and Vp.,1_ph represents the polaron—phonon -
_interaction.
(= A1/ewg) and Ag(_ dafag) are the lattice displacements, created around an
electron at the same site and nearest-neighbour sites, respectively, which move along
with the electron. When A; = gy and A; = 0, the transformation exp(—R) is exactly
the Lang—Firsov [2] transformation. In this transformation, one diagonalizes the terms
corresponding to the e-ph interaction but hopping terms are treated as perturbation [17]. If
the hopping part is not sufficiently small, one would look for a better phonon wavefunction.
"Here we treat A; and Ay as variational parameters and use a two-phonon coherent state
e} = expla >, (biby — B 5)]|0) as a trial wavefunction for the new phonon (the
equilibrium position is displaced with respect to the original phonons) state. «is a variational
parameter. To obtain an effective polaronic Harniltonian we take the average of H over the
two-phonon coherent state: '

= (onl E ¥} o - (10)

—t chcﬂ, exp[— -2 exp(—4a)] — &p Zn, - W Zn,nJ 7
. B
-+ Vg E Ripghivs + UeﬁZn,Tn,J_ + Nmo s:mh2 (11
165540
where
f¥% ,
=0 =%’ + (2 - DA | ‘ @

and N is the total number of sites in the system. As « increases, the energy of the phonon
subsystem increases; however, the polaronic narrowing effect in the band width is reduced
and, consequently, the kinetic energy of the polaron increases [14, 16]. So a proper choice
of o can minimize the ground-state energy of the system. Now we calculate the ground-state
energy of the many-polaron system (11} in the framework of the mean-field theory. Within
the mean-field approximation the Hamiltonian (11) shows different kinds of ordering, e.g:
a charge-density wave (CDW), a spin-density wave or superconductivity, depending on the
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values of Vi, Vo and Uy and the number of the polarons in the system [9-15]. However,
a CDW appears in the system for U,z < 0, i.e. when the effective on-site interaction is
attractive. Here we shall restrict our considerations to the case of a positive but small
Uegr. Therefore our system does not provide any CDW ordering. A detailed study of the
magnetic phase diagram for a single-band Hubbard model (with positive U) has been made
by several groups within the framework of mean-fieid theory [18-20]. It is found that the
magnetic state appears in the neighbourhood of n = I and, for a large region of electron
concentrations 0 < n < 0.75 and 1.25 < n <« 2, the state is paramagnetic. In this study
we focus our attention on the effect of the e-ph interactions in a Hubbard system for
electron concentrations away from n = 1, where the ground state is paramagnetic. We shall
evaluate the ground-state energy in the absence of any ordering. In the framework of the
Hartree—Fock approximation the terms corresponding to nry4n;y and nn; are approximated
as .

rigngy = mip ) + (g, — (i Hmiy ) 13)
rinj = ni{n;) + {rin; — (nid{n;}

and the ground-state energy per site is, then, obtained as

(1/N)Eg = —2tzp — epn — Vizn? — Voz'n® + LWegn® + wp sinh?(2a)  (14)
where

f. = z‘e:acp[—i.2 exp(—4a)] . _ (15

n = (1/N) Y ,{n;) is the number of electrons per site in the sjrstem

1 _
p={ctci) = —ﬁqu(c;,cqa) (16)
7= Z 1
S840 _ )
ve= Y explig- (R — Rl 17
i
and
(C.‘,Zcqﬁ = 1/{exp[B (&, — pn)}1 + 1} (18)

where &; (= —1y,) is the quasi-particle epergy, x is the chemical potential and g = 1/kzT.
At T =0,

(C;-acqo') = (p — Sq)

Hence

1 _ . .
p= K,;;wf’m—&q)- (19)
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For simplicity we shall calculate p using a square density of states:

1/2w f-—W<i <W
pg) = { / . S (20)
] 0. otherwise,
W(= zt) is the band half-width. The hopping energy at T =.0 is then obtained as
p=ien-nd). | (21)

Substituting the value of p in equatlon (14) the ground~state energy of the system with a
" square density of states is obtamed as . S

E/N = —1@2n - 1)t — epn — Vlzn + Vazn + {Uean® + wosinh®(20). © (22) '

The variational parameters A1, Az and @ are determined from the minimization conditions
of ‘the gmund—state energy. For numerical calculations we consider a square latt[ce with
z=4and ' =12 : o

3. Results and discussion
. In this section we discuss the results of our numerical caleulations. It emerges that the

variational parameters A; and A;, charac_térizing the deformations around the charge carrier,
and ¢, the two-phonon coherent state parameter, have a marked dependence on the hopping

. . parameter ¢, the e—ph coupling g) and the electron density n. We present the results for two

values of the hopping parameter 7 == ¢/wp = 2-and 0.5 which are in the crossover region
between the adiabatic (small-wp)} limit and the non-adiabatic (large-wg) limit. For £ = 2.0,
the variations in the quantities Ay, A2 and £, with g1(= g1/wo) are shown in figures 1, 2
and 3, respectively, for two different electron concentrations # = 0.3 and 0.05. It is clear
from figures 1-3 that a sharp transition occurs from small polarons to large polarons at
g1 = g. as g decreases from a large value. When g, > g. we find that A;/g; = 1 and
Ay '= 0 which indicates that the phonon cloud around the charge carrier is confined to a
- single site where the electron resides; thus the polarons are small polarons. In this region
the squeezing parameter o = 0 and a large Holstein reduction factor makes the effective
polaronic hopping very small (e < 1075t). At g; = g., A1/g1 reduces drasticaily from 1 and
Az/A1 develops abruptly, which indicate that the phonon cloud becomes thin and spreads
over a wider region as g; decreases from g.. For g; < g the corresponding polaronic
hopping () is of the order of the bare hopping (t). It is evident from figures 1-3 that
8. the small-to-large-polaron transition point, shifts towards smaller values as the electron
concentration n decreases from 0.3 to 0.05. In figures 4, 5 and 6 we plot the variations in
A1, Ay and £, respectively, with g for 7 = 0.5 and for electron concentrations n = 0.3 and
0.05. For £ = 0.5, a transition from small polarons to large polarons is also observed as g;
decreases from a large value. However, the transition occurs at a lower value of g; and is
not as sharp as for # = 2. In fact the transition for f = 0.5 is continuous. It is seen that the
abrupt changes in A4, A3 and «, as observed for large z-values, are reduced with decreasing
t and the transition becomes continuous below a certain value of #. Similar conclusions
have also been obtained in some previous studies [3-5,7]. _

In figure 7 we plot the variation in the two-phonon coherent state parameter & with g,
for different f-values of 2.0 and 0.5 and electron concentrations » = 0.3 and 0.05. It is
seen from figure 7 that o, which is zero for g = 0, increases with increasing g;, reaches a
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Figure 1. Vananon in xfg; with the e-ph coupling strength g (= gllwo) for electron
concentrations n = 0.3 (-—) and 0.05 (----). F =t/wp =2.0.
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Figure 2. Variation in A/\; with e-ph coupling steﬂgm g1 (= g1/wy) for electron
concentrations 7 = 0.3 (——) and n = 0.05 (-~--). ¥ =t/ =20. -
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Figure 3. Variation in 7 (= f./@p) with e—ph'coupling strength g1 (= gi/en) for electron
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Figure 6. Variation in 7, (= f./wo) with £1 (= g1 /wg) for n = 0.3 (—) and # = 0.05 (----).
F=t/ewg=0.5.
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maximum and then decreases rapidly as the transition from large polarons to small polarons
occurs. For £ = 2.0 the transition is discontinuous and ¢ goes abruptly to zero in the small-
polaron regime; for = 0.5, ¢ decreases continuously and becomes zero for large g;. o is
smaller for n = 0.05 than for n = 0.3 (figure 7). To investigate the role of the two-phonon
- coberent state we compare the results for two variational states of the phonon subsystem:
one of these is just the displaced oscillator state, exp(—R)J0} and the other is the squeezed -
phonon state defined as exp(—R) exp(—S5){0). The variation in A;/g; and /¢ with g; for
the above-mentioned two variational states of the phonon subsystem (& = 0 and « % 0) are
shown in figure 8 for # = 0.3 and 7 = 0.5. It is evident from figure 8 that the effect of
the two-phonon coherent state is negligible for strong as well as weak e—ph couplings but
the role of the two-phonon coherent state becomes significant in:the intermediate range of
1. It is also séen from figure 8 that consideration of the two-phonon coherent state shifts
the value of g, to a higher value. For n = 0.05 the distinction between the o = 0 and
o % 0 curves is very small (not shown in figure), implying that the effect of the two- phonon
coherent state is not appreciable for smaller numbers of electrons.

‘We have also investigated the variation in the quantities A, Az and 1. with fermion
concentration n for a constant valve of gi. In figure 9 we present plots of A/g1 and
A2/A1 and in figure 10 of ./t versus n for f = 0.5 and g1 = 2.0. A/g is about 1
and A/ is very small for low as well as high densities of electrons. As the electron
concentration increases from n = 0, A; decreases while A; increases; thus the phonon cloud
around the electron becomes thinner while its size becomes larger with increasing number
of electrons. In the intermediate range of electron concentrations (0.4 < r < 1.6), Ay and
Az show an almost constant value and then, at higher values of n, A; increases while Ay
decreases with increasing n. The curves are symmetric around n = 1. Correspondingly
the effective polaron hopping is very small (/¢ = 0.03) for very low and high densities
of elecirons while it has a value an order of magnitude higher in the intermediate range of
electron concentrations (figure 10). It is also seen from figures 9 and 10 that A;, A, and 7
- change rapidly in a parrow range of electron cbncent_rations (around n ~~ 0.23), It should be
mentioned, however, that such a rapid change in A1, Az and £, with electron cbncemration
occurs only for a narrow range of g;. In figure 10 we also plot the variation in 7, with #
for different gi-values for f = 0.5. It is seen that the curves for § = 2.0 and 2.1 are of a
similar nature. With increasing value of gy the narrow band region spreads at the expense
of the wide region. For g; = 2.2 the whole region of n corresponds to a narrow band while
for §; = 1.8 the whole region of n corresponds to a wide band. For these values of g; no
abrupt change in 2, is observed. Thus a rapid change in %, with electron concentration may
be experimentally observed if the e-ph interaction strength lies in a narrow region. In this
narrow range of e-ph couplings, the effective mass of the polarons is very high for low
~ and high electron densities whereas the effectwe mass is much lighter for an intermediate
~ electron concentration.

It may be mentioned that in figures 9 and 10 we have plotted the curves in the electron
concentration range 0.75 < n < 1.25 also. For this region of electron concentrations a
single-band Hubbard model may exhibit magnetic ordering and our results obtained using -
a paramagnetic state may not-be valid for general values of U, ¢ and g,. However, our
main interest is the occurrence of sudden changes in the polaronic properties. For g = 2.0
and 2.1 the transition from small polarons to large polarons occurs at carrier concentrations
which lie away from the range 0.75 < n < 1.25. Thus our main results would not be
affected by possible magnetic ordering in the system. Furthermore in this range of electron
concentrations the polarons are large polarons (for 2; < 2.1) and a small range of bare
U-values exists for which Uggr < % and the paramagnetic state prevails almost in the entire
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Figure 7. Variation in the two-phonon coherent state parameter ¢ with 21(= g1/wo) for different
hopping 7 (== t/wg) = 2.0 and 0.5 and electron concentrations r = 0.3 (—) and G.05 {---2).
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Figure 8. Variation in A1/g; and £/t with g (= g1/wp) for two different phonon states: one
with & = 0 (— - —) and, for the other, « is solved self-consistently (—).
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in figures 9 and 10 would be valid in almost the entire range of 7.
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Finally we should mention some limitations of our calculation. We have considered
Jattice distortions only up to the nearest-neighbour site of the charge carrier. Although
for large polarons the lattice distortion may extend up to distant neighbouring sites such as
second, third and fourth, even the e—ph interaction has a very short range (confined to within
the electron residing site). Considerations of such distant neighbour lattice distortions as
variational parameters should reduce the amount of discontinuity in Ay, A, of &, as observed
for large t-values at g.. In fact, Lowe [6] showed that the ground state of an e-ph system
does not exhibit a discontinuous transition for finite wp as e—ph coupling increases. He
pointed out that the discontinuous transition beyond a critical e-ph coupling as obtained in
previous mean-field studies [3-5] are due to the approximations involved and are diréctly
coninected with the adiabatic limit. The abrupt or discontinuous jump observed in the
present study in a certain parameter space may be a consequence of an insufficient number
of variational parameters used. _

For small f-values we obtain continuous transitions. In this parameter region the
inclusion of distant lattice distortions would not change the qualitative behaviour of the
results and the corresponding quantitative corrections would be very small as long as A /A
is small.
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